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Abstract: Semantic segmentation is one of the most widely studied problems in computer vision
communities, which makes a great contribution to a variety of applications. A lot of learning-
based approaches, such as Convolutional Neural Network (CNN), have made a vast contribution to
this problem. While rich context information of the input images can be learned from multi-scale
receptive fields by convolutions with deep layers, traditional CNNs have great difficulty in learning
the geometrical relationship and distribution of objects in the RGB image due to the lack of depth
information, which may lead to an inferior segmentation quality. To solve this problem, we propose
a method that improves segmentation quality with depth estimation on RGB images. Specifically,
we estimate depth information on RGB images via a depth estimation network, and then feed the
depth map into the CNN which is able to guide the semantic segmentation. Furthermore, in order to
parse the depth map and RGB images simultaneously, we construct a multi-branch encoder–decoder
network and fuse the RGB and depth features step by step. Extensive experimental evaluation
on four baseline networks demonstrates that our proposed method can enhance the segmentation
quality considerably and obtain better performance compared to other segmentation networks.

Keywords: CNN; semantic segmentation; depth estimation; multi-source feature fusion

1. Introduction

Semantic segmentation aims at predicting a class label for each pixel in the image,
which plays a crucial role in various applications, including autonomous driving [1–3],
robotics [4,5], medical applications [6], and augmented reality [7]. Because of the success of
CNN in recent years, a large number of semantic segmentation algorithms based on deep
learning have been proposed, which have made a breakthrough in this filed [8–11].

Deep learning techniques based on CNNs, which can naturally integrate the feature
extraction and classification into an end-to-end manner, have made a vast contribution
to semantic segmentation and obtained the state-of-the-art performance on benchmark
datasets. Among the various CNN architectures, the encoder–decoder structure is widely
used and can usually obtain excellent performance [12–14]. Figure 1 demonstrates the
architecture of a simple encoder–decoder model. As the name suggests, the network
consists of an encoder and a decoder. The former maps a high dimensional input (usually
an image) to a lower dimensional feature space, while the latter can capture sharper
boundaries of objects in the scene by gradually recovering the latent spatial information.
Nevertheless, this traditional single branch architecture cannot process the multi-input
(such as RGB and depth map) separately, making it difficult to extract a variety of context
information. Adding extra branches to process multi-input is an intuitive idea to solve this
problem [15,16]. However, there is still no experiment that investigates the performance
on different combinations of branches that have different network architectures, let alone
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any general design that can flexibly combine different networks into an integral multi-
branch architectures.

Encoder Decoder

Input image Output prediction
Latent
Feature

Figure 1. The architecture of a simple encoder–decoder model.

Images taken by monocular cameras only contain three color channels of RGB. When
humans observe these 2D RGB images, we can easily reconstruct the location distribution
and geometric relations of objects in the real scenes according to previous experience.
However, for CNN, the input RGB images only reflect the color and texture information of
the scenes, but do not record the location distribution and geometric relations of objects
in the scenes. This is caused by the inability of CNN to directly obtain depth information
from RGB images. In addition, reference [17] discovered that each segmentation class
usually had similar depth and distribution in the scene. Most studies [18–20] focus on the
segmentation on RGBD images which has the ground truth of depth information; however,
for monocular RGB images, the optimal way to improve segmentation performance utiliz-
ing depth information has been left an open question. Therefore, we believe that the lack
of depth information may lead to sub-optimal results on RGB images. Considering that,
if we can obtain the depth information of RGB images, it will be an extra source for the
network to improve the segmentation quality.

Based on the above observation, we propose a semantic segmentation network leverag-
ing simultaneous depth estimation. Specifically, we utilize a depth estimation network [21]
to obtain the depth information of RGB image datasets, and treat the depth map as one
of the inputs to the network which will guide the network to obtain better segmentation
performance. In addition, based on the traditional encoder–decoder structure, we add a
new encoder branch to extract the underlying semantic features in the depth map. In order
to fully learn the RGB and depth information, we proposed a feature fusion strategy to fuse
the two kinds of the information step by step. Finally, the decoder restores the fused feature
to the image resolution and outputs the prediction. In our experiments, we investigate
the relationship between various combinations of RGB and depth encoders—including
different backbone networks—on performance and obtain better performance compared to
other representative segmentation networks.

In summary, our method can improve the segmentation quality by fusing the depth
feature into RGB feature, even without the ground truth of the depth in the datasets.
In addition, compared with the simple element-wise summation strategy proposed in [15],
our method allows encoders with different structures to combine with each other and
improves the segmentation performance.

The paper makes main contributions as follows:

• We propose a method to guide the RGB image semantic segmentation using depth
information extracted from a depth estimation network.

• We propose a novel fusion strategy based on the multi-branch network architecture,
which allows encoders with different structures to combine with each other and
improves the segmentation performance.

• We train several networks using our proposed method on the ADE20k [22] dataset
without any extra data source. Experiments show that our method can improve the
segmentation performance compared with the baseline model.
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The rest of this paper is organized as follows. Section 2 presents the related work on se-
mantic segmentation networks and other research related to our work. Section 3 discusses
our proposed method in detail. Section 4 elaborates the experiments and the quantitative
and qualitative results based on several representative models. Finally, the conclusions and
future works are discussed in Section 5.

2. Related Work
2.1. Semantic Segmentation Networks

Before deep learning was applied to computer vision tasks, most image segmentation
methods were based on hand-crafted features, such as thresholding [23], region splitting,
or merging [24,25]. Some other pioneer works also focus on semantic segmentation in the
framework of MPEG-7 standard [26–28]. Some other techniques used retrainable neural
networks also provide another solution for semantic segmentation [29–31]. More recent
algorithms often optimize the metric of intra-region similarity and inter-region dissimilarity,
such as mean shift [32] and graph based image segmentation [33]. In recent years, many
semantic segmentation problems are solved with deep learning, which is more accurate and
efficient compared to traditional methods. In this section, we review some representative
research based on their main technical contributions.

Fully convolutional networks. Fully Convolutional Networks (FCN) [34] was the first
CNN network proposed for semantic segmentation. FCN replaced the full connected layers
with convolution layers in the original image classification network (such as VGG16 [35]
and GoogLeNet [36]), enabling the network to process non-fixed size of input images. In ad-
dition, skip connection and bilinear interpolation were used to restore the low-resolution
feature map to the original resolution. The model achieved state-of-the-art performance
on Pascal VOC [37], NYUDv2 [38], and SIFT Flow [39]. However, FCN did not take into
account the globe-level semantic context which led to inaccurate results in some cases.
In order to overcome this limitation, ParseNet [40] modified the structure of FCN using
the average feature of a layer to augment the features at each location and produce a
smoother segmentation result than original FCN. As a pioneering work in semantic seg-
mentation, the formulation of FCN was followed by many related research [41–43]. CNNs
with graphical models. To overcome the drawback that traditional CNNs cannot capture
global context information well, many works focus on combining CNN with probabilistic
graphical models. Chen et al. [44] proposed a network based on the combination of CNNs
and fully connected Conditional Random Fields (CRFs). They noted that the last layer
of the CNN was not sufficiently localized for accurate object segmentation. To solve this
problem, they utilize a fully connected CRF to integrate more global context information.
Compared to previous networks, their model is able to localize the object boundaries more
accurately. Lin et al. [45] combined a contextual deep CRFs with the deep network to
capture “patch–patch” context (between image regions) and “patch-background” context.
The results showed this formulation was able to integrate more contextual information
into the features and achieved the state-of-the-art performance on Pascal VOC 2012. Other
similar works combine probabilistic graphical models and CNN include [46–48].

Encoder–decoder based networks. Another popular segmentation architecture in
semantic segmentation field is encoder–decoder based networks. Badrinarayanan et al. [12]
proposed Segnet, a symmetric encoder—decoder structure for semantic segmentation.
In Segnet, both the encoder and decoder consisted of the 13 convolution layers in the
VGG16 network and unpooling layers were used as the upsampling strategy to restore the
resolution of feature map. HRNet [14] is also a typical encoder–decoder network. Other
than recovering high resolution features such as Segnet, it proposed a method to keep the
high resolution of feature graph in the whole process of convolution. By gradually adding
low-resolution feature map subnetworks to the main network of high-resolution feature
graph in parallel, different networks realized multi-scale fusion and feature extraction.
Other encoder–decoder networks [13,49,50] also obtain inspiring performance.
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Dilated convolution. Networks using dilated convolution have been widely used
for semantic segmentation. Compared with traditional convolution, dilated convolution
can obtain a bigger receptive field without sacrificing spatial resolution. One of the most
popular networks is Deeplab family. DeepLab [44,51–53] series networks first proposed
dilated convolution to address the decreasing resolution in the network (caused by max-
pooling and striding) and realized a multi-scale receptive field via Atrous Spatial Pyramid
Pooling (ASPP), thus enabling a robust segmentation of objects with multi-scale input.
In addition, dilated convolution has been applied in various occasions due to excellent
performance and no extra computation [54–56].

Attention based networks. Attention mechanisms have been explored in computer
vision over the past years, and some works also tried to build their networks based on
attention mechanisms for semantic segmentation. Huang et al. [57] proposed a network
using reverse attention mechanisms, namely Reverse Attention Network (RAN). The net-
work tried to learn the opposite concept, for example, the network can learn what a cat
is and what is not a cat simultaneously, which is able to enhance intra-class similarity
and inter-class dissimilarity to some extent. Li et al. [58] proposed a Pyramid Attention
Network for semantic segmentation whose biggest difference from previous works lied in
the fact that the author uses FPA (Feature Pyramid Attention) and GAU (Global Attention
Upsample) instead of ASPP structure to extract features. Similar works include [59–62].

Networks for RGBD images segmentation. Many works also focused on the segmen-
tation of RGBD image data. In [15,63–65], a new branch was added to process the depth
information and fused the depth features into RGB features. Another idea is to encode a
depth map into an HHA image (Horizontal delineation, Height above ground, and norm
Angle), and then input the RGB image and HHA image into two branch networks, respec-
tively, finally adding the outputs of the two networks together. Authors in [66–69] attempted
to utilize 3D convolution to solve the segmentation problem of RGBD images, but led to
high computation and memory consumption. Aiming at the drawback of high computation
and memory consumption, a method of depth-aware convolution and depth-aware average
pooling was proposed [70], which can improve the segmentation performance and reduce
the network computation without introducing any additional parameters.

2.2. Depth from a Single Image

How to obtain depth information of real scenes from a single input image has
been a challenging problem in computer vision field. Existing methods can be cate-
gorized into supervised learning and unsupervised/self-supervised learning methods.
Eigen [71] et al. first proposed the method of multi-scale depth network to predict the depth
map. Fu [72] et al. increased the speed of network convergence based on ordinal regression
but might fall into local optimal solution in monocular depth estimation. Considering that
a local constraint calculated on a small neighborhood did not fully utilize the geometric
structure information of the scene, Yin [73] et al. proposed a more stable geometric con-
straint from a global perspective, which can considerably improve the depth prediction
accuracy. On the other hand, since the acquisition of ground-truth of depth information is
resource intensive, many methods with unsupervised/self-supervised have been proposed.
Godard et al. [74] proposed a self-supervised network, which uses a minimum reprojection
loss to handle occlusions robustly. Zhou et al. [75] put forward an unsupervised learning
framework that can jointly predict the depth map and the ego-motion from the monoc-
ular video. Vincent et al. [76] introduced geometric structure in the learning process by
modeling the scene and the individual objects to improve the prediction performance of
monocular videos. In addition, various methods [77–80] are proposed to improve the
performance of unsupervised/self-supervised depth estimation. Other research aimed
at solving the poor generalization performance on unseen scenes outside the training set
of traditional monocular depth estimation networks. For example, Yin [21] constructed
a large scale and high-diversity RGBD dataset, and learned affine-invariant depth on the
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diverse dataset, which ensured both high generalization and high quality geometric shapes
of scenes.

In the works mentioned above, some of them focus on introducing various network
structures (such as dilated convolution) to improve the segmentation performance, while
the others achieve higher accuracy by preprocessing the input data (such as the HHA
image). However, few studies have focused on how to utilize depth information to assist
network segmentation on the RGB data sets. Inspired by these works, we propose a method
to realize semantic segmentation by simultaneous depth estimation. Specifically, we first
obtain the depth map of input RGB images by a depth estimation network, which reflects
the geometric relationship and distribution of scene objects to guide the semantic segmen-
tation. In addition, based on the traditional encoder–decoder structure, we add an extra
branch to process the depth map generated by the depth estimation network. In order to
incorporate the depth information into the semantic segmentation framework, we propose
a fusion strategy to fuse the RGB and depth features step by step. Our proposed formu-
lation can be applied on various encoder–decoder networks flexibly. The experimental
results show that the method can effectively improve the segmentation performance of the
backbone networks.

3. Method

In this section, we discuss the architecture of our semantic segmentation network in
detail and then introduce the depth estimation network.

3.1. Segmentation Network Structure

We propose an encoder—decoder network structure, as shown in Figure 2. The net-
work is mainly composed of two parts: (1) RGB encoder and depth encoder, the two
encoders are respectively used to extract the feature map of RGB and depth input images;
(2) Decoder, the decoder restores the low resolution feature map to the original size and
predicts the output. We will discuss the structures in more detail below.

Depth Fusion

AvgPool + Conv
(Output size=1)

AvgPool + Conv
(Output size=2)

AvgPool + Conv
(Output size=3)

AdaptiveAvgPool
(Output size=6)

Upsample

Upsample

Upsample

Final Conv

Upsample

Depth
Estimation

PredictionRGB Encoder

Depth Encoder

Decoder

Concat

Upsample

Figure 2. The detailed architecture of our proposed network. The inputs are an RGB image and its corresponding depth
map. They are separately fed into two encoders. Then, depth features are fused into RGB features step by step. The fused
features are fed into the decoder that consists of a PPM [81] module. At last, the decoder outputs the prediction of
semantic segmentation.
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3.1.1. RGB Encoder and Depth Encoder

As shown in Figure 2, we use the classic image classification networks as the backbone
of the encoders (such as Resnet [82], VGG [35], and Mobilenetv2 [83]). After removing the
final full connection layers and softmax layers, the model becomes a fully convolutional
network, and we divide the model into several blocks at each down-sampling operation
(such as pooling, striding convolution, and interpolation and so on). In each block of
the model, the depth features are fused into the RGB encoder before the down-sampling
operation (which will be discussed in detail below), and then the fused feature of this block
is fed into the next block. Note that the structure of the original RGB encoder has not been
changed at all, thus the final output feature has the same size with the original RGB encoder.
This allows us to flexibly try a variety of combinations of RGB encoders and depth encoders.
In this paper, we adopt DilatedResnet50, DilatedResnet101 DilatedMobileNetV2 which
are proposed in [22], and HRNetV2 [14] as our RGB encoders. As for depth encoders, we
adopt Resnet50 and VGG16. The performance of these combinations will be demonstrated
in the experimental section.

3.1.2. Fusion Strategies

In this section, we will describe in detail how to fuse the output feature of each block
in the depth encoder into the RGB encoder. Different from FuseNet [15] that simply uses
an identical structure for both the RGB encoder and the depth encoder, our network adopts
different architectures for them. Thus, an element-wise summation for RGB feature and
depth feature without any processing no longer applies in this case. To allow the fusion
process, we propose a novel fusion strategy that can eliminate the contradictions caused
by different network structures and improve the performance by using properly the 1 × 1
convolution layers and a fused ratio coefficient. As shown in Figure 3, after each block of
RGB and depth encoder, we add the output feature map element by element. We use two
strategies to implement this operation.

block1 block2 block3

block1 block2 block3

1×1 Conv 1×1 Conv 1×1 Conv

……

……

λ

(1-λ)

λ

(1-λ) (1-λ)

λ

Figure 3. After each block of RGB encoder and depth encoder, the depth feature is fed into 1 × 1 convolution, and then we
add the RGB and depth features together via a proportion parameter λ.

On the one hand, because the RGB encoder and depth encoder have different archi-
tectures, their output feature size of each block may be different from each other. In order
to add the two feature maps element by element, it is necessary to ensure that they have
the same size. To ensure that the RGB and depth features have the same width and height,
we only perform a feature fusion after each pooling layer or strided convolution where
the output size will be halved. In addition, we utilize 1 × 1 convolution to ensure the
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depth feature map have the same number of channels as the RGB feature map. After that,
the RGB and depth features have the same width, height, and number of channels, which
enable us to add them element by element. Note that our fusion approach works only for
the two encoders that use the same stride-2 operations.

On the other hand, to control the fusion proportion of RGB information and depth
information, we introduce a coefficient λ, and use the following formula for fusion:

f f usion = (1 − λ) frgb + λ fdepth (1)

where f f usion denotes the feature map after fusion, frgb denotes the RGB feature map, and
fdepth denotes the depth feature map. Changing the value of λ allows us to control the pro-
portion of the two types of information. Specifically, the bigger λ is, the greater proportion
of depth information in fusion features compared with RGB information, and vice versa.
Considering the extreme case, when λ = 0, depth information is not fused into RGB fea-
tures, and the network degrades into the original RGB encoder–decoder structure. When
λ = 1, there is no RGB information in the fusion feature, and the network becomes a depth
encoder–decoder structure. The value of λ indicates the proportion of depth features fused
with RGB features, and is crucial to the segmentation performance of the network. In our
experiments, we set the λ = 1 to 0.4 for best performance.

3.1.3. Decoder

In order to capture the different scales of global contextual information, we adopt the
module proposed by [81], Pyramid Pooling Module (PPM), which is shown in Figure 4.
In the segmentation of complex scenes, it is very important to obtain global contextual
information from the input image. In the deep convolutional neural network, the size of
the receptive field can roughly measure the amount of contextual information captured.
In addition, the receptive field of the network calculated theoretically is potentially larger
than the size of the input image. However, in fact, the empirical receptive field of the
network can be smaller, especially in the high-level layers of the network [81]. The global
average pooling can solve this problem well. We use four different scales of global average
pooling layer (1× 1, 2× 2, 3× 3, 6× 6) to process input features. After dimension reduction
by 1× 1 convolution layer, the low-resolution feature maps are restored to the input feature
size by bilinear interpolation upsampling. Finally, we concatenate the features of different
levels to obtain the final pyramid pooling global feature.

Figure 4. The architecture of the Pyramid Pooling Module (PPM).

3.2. Depth Estimation Network

In this paper, we try to estimate depth on RGB image datasets with no ground-truth
information. In addition, an unsupervised depth estimation network usually requires
camera calibration parameters or image data of previous and next frames in the video,
which are difficult to obtain for RGB image datasets. In addition, in order to apply our
model in various scenarios, it is important to choose a network that can well predict the
depth of complicated scenes. Therefore, our method needs to select a depth estimation
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network with high generalization performance that can generate satisfactory results in
various scenes to predict the depth information of RGB images. The work in [21] is able
to meet our requirements. Different from KITTI, NYU, SUN-RGBD, and other datasets of
low-diversity scenes, this paper constructed a dataset with tremendous diversity scenes
by crawling stereo images or videos from the internet. In addition, the authors trained
a model which utilized affine invariant to predict depth. Due to the use of the multi-
curriculum learning policy, which sorts the training data by the increasing difficulty and
samples a series of mini-batches that exhibit an increasing level of difficulty, the model
trained on the constructed dataset has good generalization performance. Therefore, we
use this model directly to predict the depth of the ADE20k dataset. To demonstrate the
robustness of Diverse Depth, we also test the same images in the ADE20k dataset using
other two monocular depth estimation methods, named monodepth2 [74] and packnet-
sfm [84], respectively. As we can see in Figure 5, for images which are not included in
their training datasets, monodepth2 and packnet-sfm can not estimate the depth well,
and the boundary of different objects is fuzzy compared to the prediction of Diverse
Depth. In contrast, Diverse Depth [21] performs well on the ADE20k dataset. In the
predicted depth map, the boundary of objects is easy to distinguish, and the spatial layout
of the image can be reflected to some extent which will be useful supplements for RGB
information. As for the generalization, the performance of monodepth2 and packnet-sfm
is mixed in various scenes, and, by contrast, Diverse Depth is able to predict depth more
accurately in various scenes, including indoor, outdoor, natural landscapes, and streetscape,
etc. Note that, for visualization, we map the output of depth estimation network to a color
image. However, unlike the RGB depth map showed in Figure 5, in our experiment,
the depth map has only one channel and is normalized before being fed into the network.

Images DiverseDepth monodepth2 packnet-sfm

Figure 5. The comparison results of different depth estimation methods on the ADE20k dataset.
Because of the lack of the ground truth, we do not retrain depth estimation models. The depth
estimation results come from the application of the original models from [21,74,84], respectively. All
of the images are not included in the training sets of these three models. The scene in the images
includes indoor, outdoor, streetscape, and natural environment. Blue parts mean being closer to the
camera, while red regions are farther.
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4. Experiment

In this section, we evaluate our proposed method on the ADE20k dataset. The
ADE20k dataset and the experimental configuration are described first. Then, the quanti-
tative and qualitative results are presented. Finally, we present an ablation study on our
proposed method.

4.1. Dataset and Experiment Configuration
4.1.1. Dataset

The ADE20k dataset contains 20,210 images for training and 2000 images for valida-
tion, all of which are high quality pixel-level finely annotated scene images. There are
totally 150 semantic categories included for evaluation, including various stuff like sky,
road, grass, and discrete objects like personss, cars, and beds [22]. Compared to other
semantic segmentation datasets, the ADE20k dataset covers more diverse scene types and
object categories, which presents a greater challenge to the segmentation performance of
networks. In this paper, we use pixel accuracy and mean IoU (Intersection over Union) to
evaluate the results:

Pixel Acc. = ∑
i

nii/ ∑
i

ti (2)

mean IoU = (1/nc)∑
i
(nii/(ti + ∑

j
nji − nii)) (3)

where nij is the number of pixels that is labeled as class i and predicted as class j, nc
indicates the number of classes, and ti = ∑j nij denotes the number of pixels with ground
truth class i.

4.1.2. Experiment Configuration

The network is implemented under the pytorch framework. In the training, we use
four NVIDIA Tesla V100 (Santa Clara, CA, USA) with 16 GB of GPU memory, and each
GPU calculates two images. During training, we fix the parameters of the depth estimation
network and only optimize the parameters of the semantic segmentation network (the two
encoders and the decoder). We use the cross entropy as the loss function and the SGD
optimizer with the base learning rate of 0.02, the momentum of 0.9, and the weight decay
of 0.0005. The poly learning rate policy with the power of 0.9 is used for dropping the
learning rate. All of the models are trained for 100K iterations with the batch size of 8 on
four GPUs. For the backbone networks in our models, we initialize the parameters of the
pre-trained model on ImageNet, and the remaining parameters are initialized by Kaiming
initialization [85]. In the training, the short side length of the image is randomly resized to
one of (300, 375, 450, 525, 600), and flipped randomly. The maximum size of the long side
length of the image is limited to 1000. For the initialization of the parameter of the models,
we set the random seed of pytorch as 304 in all of our experiments. In addition, during the
inference, we adopt a multi-scale testing strategy that averages the output of various input
image sizes as our prediction result.

4.2. Experimental Results

In the experiment, we provide several optional structures as the encoders. We use
DilatedResNet50, DilatedResNet101, and DilatedMobileNetV2 proposed in [22] and HR-
NetV2 [14] as our RGB encoder separately. For depth encoder, we remove the full con-
nection layers and softmax layers in the original VGG16 [35] and Resnet50 [82], and only
retained the full convolution part as our depth encoders. We combine these structures
in the manner described in Section 3: when the feature size of RGB encoder is halved,
we perform a feature fusion operation with the corresponding RGB features and depth
features. All decoders are the aforementioned Pyramid Pooling Module (PPM) [81] struc-
ture. Taking the original network structure without depth encoder, we train a total of 12
different network models on the ADE20k dataset, and then evaluate them on the validation
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set. During training, fusion proportion λ is set to 0.4. Model performance on the ADE20k
validation set is shown in Table 1.

From Table 1, we can see that, after the depth encoders are added, the models show
certain improvement on the ADE20K validation set. Resnet50 has a better performance
than VGG16 as a depth encoder. For mean IoU, Resnet50 has improved by 0.7–1.2%
compared with the original network (without depth encoder). VGG16 also has improved
by 0.4–0.6%. Among them, the depth encoder improved DilatedResNet50 most, VGG16
and Resnet50 improved 0.6% and 1.2%, respectively as the depth encoder. In addition,
the HRNetv2+Resnet50 model achieves the best performance which gets an 82.01% pixel
accuracy and 43.98% mean IoU separately. The result indicates that the depth feature
can provide a certain amount of information for segmentation, which is consistent with
our thinking.

Table 1. Experimental results of our proposed models on ADE20k validation set. In the Depth
encoder column, ‘None’ denotes no depth encoder in the model.

RGB Encoder Depth Encoder Pixel Acc. (%) Mean IoU (%)

Dilated-MobileNetV2

None 78.26 36.28

VGG16 78.54
(+0.28)

36.79
(+0.51)

Resnet50 78.86
(+0.60)

37.31
(+1.03)

Dilated-ResNet50

None 80.13 42.14

VGG16 80.66
(+0.53)

42.75
(+0.61)

Resnet50 81.52
(+1.39)

43.40
(+1.26)

Dilated-ResNet101

None 80.91 42.53

VGG16 80.96
(+0.05)

42.96
(+0.43)

Resnet50 81.56
(+0.65)

43.54
(+1.01)

HRNetV2

None 81.47 43.20

VGG16 81.64
(+0.17)

43.66
(+0.46)

Resnet50 82.01
(+0.54)

43.98
(+0.78)

We select some images on the ADE20k validation set and present qualitative results of
several models. As can be seen from Figure 6, our proposed models can segment objects
more accurately than a basic network (without a depth encoder). In addition, Resne50
performs better than VGG16 as a depth encoder, which is consistent with the performance
in Table 1.

Nevertheless, our method inevitably results in an increase in computation. Taking
DilatedResNet50 as an example, when the depth encoder is None/VGG16/Resnet50,
the average inference time is 29 ms/40 ms/47 ms respectively for a single 480 × 480
RGB image.
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Figure 6. Ground-truth and qualitative results of proposed models on the ADE20k validation set.
In the predictions of the second column, several models misclassify the brown class into magenta
class. The brown class denotes the “building”, and the magenta class denotes “house”. These two
classes are similar, so it is easy to lead to misclassification.

Table 2 shows the comparison result of our models and other state-of-the-art meth-
ods on the ADE20k validation set. As we can see in the table, the proposed model
HRNetV2+Resnet50 performs better on pixel accuracy and mean IoU than other meth-
ods. The performance of DilatedResnet50+Resnet50 and DilatedResnet101+Resnet50
are also close to that of existing methods. The poor performance of model DilatedMo-
bileneV2t+Resnet50 is due to the limited performance of base network DilatedMobilenetV2
(as in Table 1), but the performance is still improved compared with the base network. How-
ever, we have to admit that our approach has limited advantages over some methods listed
in Table 2. However, it is worth noting that our model improves w.r.t the baseline models
(>1% Mean IoU on average in Table 1 for Resnet50 depth decoder), and from the qualitative
results show by Figure 6, we can see our method improve the performance indeed.
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Table 2. Comparison of ADE20k validation set. (For simplicity, we only show the result of models
whose depth encoder is Resnet50.)

Model Pixel Acc. (%) Mean IoU (%)

FCN-8s [34] 71.32 29.39
SegNet [12] 71.00 21.64
DilatedNet [86] 73.55 32.31
RefineNet(resnet152) [87] 79.32 40.70
UperNet(resnet101) [88] 81.01 42.66
HRNetV2 [14] 81.20 43.20
DSSPN(resnet101) [89] 81.39 43.68
PSANet(resnet101) [90] 81.45 43.77

DilatedMobilenetV2+Resnet50 78.86 37.31
DilatedResnet50+Resnet50 81.52 43.40
DilatedResnet101+Resnet50 81.56 43.54
HRNetV2+Resnet50 82.01 43.98

4.3. Ablation Study

This section discusses the impact of different network configurations on model seg-
mentation performance. Specifically, we compare our fusion strategy with FuseNet [15].
Then, we evaluate the effect of the fused ratio coefficient λ and the decoder structure.
Lastly, we discuss the multi-scale testing strategy and segmentation performance of the
model on each class of objects.

4.3.1. Fusion Approach

Our fusion approach is different from FuseNet [15] that uses an element-wise sum-
mation for RGB feature and depth feature without any processing. We use the 1 × 1
convolution layers and fused ratio coefficient λ to fuse two kinds of features. We compare
our fusion strategy with the method proposed by FuseNet [15] under the same experiment
configuration. Specifically, we retrain the FuseNet and our DilatedResnet50+Resnet50
model with the fusion strategy proposed by FuseNet Note that DilatedResnet50 and
Resnet50 have the same number of channels of each block, so two kinds of features can
be fused without 1 × 1 convolution layers which ensure the feasibility of fusion strategy
proposed by FuseNet. As we can see in Table 3, the retrained FuseNet only achieves 71.69%
pixel accuracy and 27.81% Mean IoU on ADE20k, which is worse than our models. Consid-
ering that the poor performance may be caused by the different backbone architecture, we
use the fusion strategy proposed by FuseNet to train our DilatedResnet50+Resnet50 model
which gets 79.46% pixel accuracy and 41.62% Mean IoU on ADE20k. The same network
architecture that adopts our fusion strategy improves 2.06% and 1.82% on pixel accuracy
and Mean IoU, respectively, compared with the fusion strategy proposed by FuseNet.

Table 3. Comparison of the fusion strategies of FuseNet [15] and us.

Models * Pixel Acc. (%) Mean IoU (%)

FuseNet 71.69 27.81
DilatedResnet50+Resnet50 (fusion strategy of FuseNet) 79.46 41.62

DilatedResnet50+Resnet50 (our fusion strategy) 81.52 43.40
* FuseNet is the original model proposed in [15], DilatedResnet50+Resnet50 (fusion strategy of FuseNet) and (our
fusion strategy) denote our DilatedResnet50+Resnet50 model with the fusion strategy proposed by FuseNet and
us, respectively.
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4.3.2. Fused Ratio Coefficient

In order to explore the influence of fused ratio coefficient λ on segmentation per-
formance, different λ are used for training based on DilatedResNet50+Resnet50+PPM.
The results are shown in Table 4.

Table 4. The performance of our model using different λ.

λ 0.2 0.4 0.6 0.8

Pixel Acc. (%) 80.22 81.52 81.26 79.77
Mean IoU (%) 42.13 43.40 43.05 40.34

λ controls the fusion ratio of depth and RGB information. As can be seen from Table 2,
when λ = 0.4, the model performs best; when λ is too small, depth information takes up a
small proportion in the fused features, and the performance improvement is not obvious.
Considering the extreme case λ = 0, the model degrades into the original RGB encoder–
decoder model. When the λ is too large, the RGB component is so small in the fusion
feature that the model performance is even worse than the original network. Therefore,
selecting an appropriate value of λ is crucial for network performance. After extensive
attempts, we find that the network performs best when λ = 0.4.

4.3.3. Decoder

In order to investigate if the PPM decoder works as mentioned above, we remove the
multi-scale pooling layer and 1 × 1 convolution layers in PPM which are used to capture
the global contextual information of different scales. In other words, the new decoder
consists of only one convolution layer and a bilinear interpolation layer. In addition,
the new decoder is denoted by C1. We train the DilatedResnet50+Resnet50+PPM and
DilatedResnet50+Resnet50+C1 models, and get the results shown in Figure 7.

As shown in Figure 7, we compare the segmentation results of two different net-
works. Because there is no multi-scale global context information, model DilatedRes-
net50+Resnet50+C1 cannot completely segment some objects in the scenes (the parts
circled by white circles). In contrast, model DilatedResnet50+Resnet50+PPM processes the
features using the global average pooling layer of four scales, and effectively obtains the
global context information from the input image. In addition, the larger receptive field
enables the model to better understand the interrelationships of objects in the scene, which
brings about better segmentation performance.

4.3.4. Multi-Scale Testing

The size of the input image has a significant impact on the performance of the seg-
mentation model. In fact, multi-scale is one of the most useful techniques for improving
accuracy. In the basic network, feature maps are usually tens of times smaller than the
original images, which makes the feature description of small objects difficult to be cap-
tured by the network. By introducing multi-scale testing strategy, we can get more robust
results than single scale testing. Table 5 presents the comparison results of our models
with/without the multi-scale testing strategy. From the table, we can see that the multi-scale
testing strategy improves the performance markedly.
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Image Ground-Truth C1 PPM

Figure 7. Segmentation results of DilatedResnet50+Resnet50+C1 and DilatedResnet50+Resnet50+
PPM. In the figure, C1 denotes that the decoder only consists of one convolution layer, and PPM
denotes the decoder is a Pyramid Pooling Module. From left to right are: input images, ground-
truth, the segmentation result of DilatedResnet50+ Resnet50+C1, and the segmentation result of
DilatedResnet50+Resnet50+PPM. As can be seen from the part circled by the white circle in the figure,
PPM can segment the object more completely, and the segmentation performance of object boundary
is also better.

Table 5. The comparison results of our models with/without multi-scale testing strategy. MS denotes
the Multi-scale Testing.

Model MS Pixel Acc. (%) Mean IoU (%)

Dilated-MobileNetV2+VGG16+PPM
No 77.69 35.76
Yes 78.54 36.79

Dilated-Resnet50+VGG16+PPM
No 79.78 41.93
Yes 80.66 42.75

Dilated-Resnet101+VGG16+PPM
No 80.12 41.87
Yes 80.96 42.96

Dilated-HRNetV2+VGG16+PPM
No 80.87 42.54
Yes 81.64 43.66

Dilated-MobileNetV2+Resnet50+PPM
No 77.87 36.78
Yes 78.86 37.31

Dilated-Resnet50+Resnet50+PPM
No 80.46 42.90
Yes 81.52 43.40

Dilated-Resnet101+Resnet50+PPM
No 80.43 42.52
Yes 81.56 43.54

HRNetV2+Resnet50+PPM
No 81.62 43.46
Yes 82.01 43.98
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4.3.5. Performance on Each Category of Objects

In order to study the performance of the model on each category of objects, we
plot the IoU performance on all the 150 categories which is given by the DilatedRes-
Net50+Resnet50+PPM model, as shown in Figure 8.

As in Figure 8, the model has the best segmentation performance on the sky, buildings,
buses, and other large objects, while small objects, such as blanket, tray, and glass, have
the worst segmentation performance. This may be caused by large objects taking up more
pixels in the image while small objects take up fewer.

Figure 8. Detailed IoU on the 150 categories given by DilatedResNet50+Resnet50+PPM model. The best segmented
categories are big objects, and the worst segmented categories are objects that are usually small and have few pixels.

5. Conclusions

We propose a method of extracting depth information via depth estimation to promote
semantic segmentation performance on RGB images. By adding a depth encoder branch
to the encoder–decoder network structure, the depth information is gradually fused into
the RGB feature and enhance the segmentation performance of the model. We have tried a
variety of model structures, and the experimental results show that the proposed method
can effectively improve the performance of the original encoder–decoder model.

Future work will focus on trying to improve the performance of depth estimation
through the semantic segmentation results. If we get more accurate depth information, it
will promote the performance of semantic segmentation. In addition, then we can build a
joint multi-task model of depth estimation and semantic segmentation.
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